Activity-dependent regulation of T-type calcium channels by submembrane calcium ions
نویسندگان
چکیده
Voltage-gated Ca2+ channels are involved in numerous physiological functions and various mechanisms finely tune their activity, including the Ca2+ ion itself. This is well exemplified by the Ca2+-dependent inactivation of L-type Ca2+ channels, whose alteration contributes to the dramatic disease Timothy Syndrome. For T-type Ca2+ channels, a long-held view is that they are not regulated by intracellular Ca2+. Here we challenge this notion by using dedicated electrophysiological protocols on both native and expressed T-type Ca2+ channels. We demonstrate that a rise in submembrane Ca2+ induces a large decrease in T-type current amplitude due to a hyperpolarizing shift in the steady-state inactivation. Activation of most representative Ca2+-permeable ionotropic receptors similarly regulate T-type current properties. Altogether, our data clearly establish that Ca2+ entry exerts a feedback control on T-type channel activity, by modulating the channel availability, a mechanism that critically links cellular properties of T-type Ca2+ channels to their physiological roles.
منابع مشابه
Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex
In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...
متن کاملInvolvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex
In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...
متن کاملRegulation of ion channels by cAMP-dependent protein kinase and A-kinase anchoring proteins.
Subcellular targeting of the cAMP-dependent protein kinase is achieved, in part, through association with A-kinase anchoring proteins (AKAPs). Recent evidence suggests that specific AKAPs direct the kinase to submembrane sites to facilitate phosphorylation and modulation of a variety of ion channels. A new membrane-anchored AKAP targets cAMP-dependent protein kinase to calcium channels and enha...
متن کاملThe Involvement of L-Type Voltage-Operated Calcium Channels in the Vascular Effect of Quercetin in Male Rats
In this study, the possible involvement of L-type voltage-operated calcium channels in the vasorelaxant effect of the flavonoid quercetin was investigated, using the isolated aortic rings from normal male rats. Addition of quercetin (0.1 µM-1 mM) caused a significant dose-dependent relaxation of noradrenaline (NA)- and KCl-preconstricted rings and nifedipine attenuated this response, especially...
متن کاملThe Involvement of L-Type Voltage-Operated Calcium Channels in the Vascular Effect of Quercetin in Male Rats
In this study, the possible involvement of L-type voltage-operated calcium channels in the vasorelaxant effect of the flavonoid quercetin was investigated, using the isolated aortic rings from normal male rats. Addition of quercetin (0.1 µM-1 mM) caused a significant dose-dependent relaxation of noradrenaline (NA)- and KCl-preconstricted rings and nifedipine attenuated this response, especially...
متن کامل